何谓吸收光谱其特征及用途是什么
吸收光谱是指物质吸收光子,从低能级跃迁到高能级而产生的光谱。吸收光谱可是线状谱或吸收带。研究吸收光谱可了解原子、分子和其他许多物质的结构和运动状态,以及它们同电磁场或粒子相互作用的情况。
吸收光谱又名吸收曲线。不同波长光对样品作用不同,吸收强度也不同。
吸收光谱是材料在某一些频率上对电磁辐射的吸收所呈现的比率,与发射光谱相对。
吸收光谱特征:定性依据
吸收峰→λmax
吸收谷→λmin
肩峰→λsh
末端吸收→饱和σ-σ跃迁产生
处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。
吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如果让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。光谱背景是明亮的连续光谱。在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结,每一种元素的吸收光谱里暗线的位置与其明线光谱的位置互相重合。即每种元素所发射的光频率与其所吸收的光频率相同。
纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式也即“吸收光谱”。
吸收光谱广泛应用于材料的成分分析和结构分析,以及各种科学研究工作。观察吸收光谱的方法有以下几种:
①使用具有连续光谱的光源,如白炽灯、连续谱红外光源。光通过样品后经过分光仪器被记录下来,在连续的白光本底上显示暗的吸收光谱。
②使上述光源发出的光先通过分光仪器,成为准单色光。调节分光仪器,使光的频率连续扫描,通过样品并被记录下来,得到吸收光谱的线形。
③使用频率可连续调谐的激光器作光源,不用分光仪器,直接记录吸收光谱。激光技术的发展给吸收光谱方法的研究以巨大的推动,现已具备了为获得极高分辨率、极高灵敏度等所需要的激光吸收光谱技术(见激光光谱学)
延伸阅读
原子光谱分为哪两种
原子光谱分为发射光谱和吸光光谱。
1.发射光谱:物体发光直接产生的光谱。分明线光谱与连续光谱。
①明线光谱:由稀薄气体或蒸气发出的光形成。
②连续光谱:由炽热气体,液体,高压气体所发出的光形成。
2.吸收光谱:由温度很高的光源发出来的白光,通过温度较低蒸气或气体后产生。
原子吸收光谱:原子处于能量最低状态(最稳定态),称为基态(e0 = 0)。当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。这个一定波长的谱线就是吸收谱
太阳光为什么是吸收光谱
太阳光谱是吸收光谱。
是因为:
一、太阳发出的光,穿过温度比太阳本身低得多的太阳大气层,而在大气层里,存在着从太阳里蒸发出来的,许多元素的气体。
二、当太阳光穿过它们时,跟这些元素的标识谱线相同的光,都被这些气体吸收掉了。
太阳光
一、广义的定义,是来自太阳所有频谱的电磁辐射。
二、当太阳辐射没有被云遮蔽,直接照射时,通常被称为阳光,是明亮的光线和辐射热的组合。
吸收光谱
一、是指物质吸收光子,从低能级跃迁到高能级,而产生的光谱。
二、吸收光谱可视线状谱或吸收带。
研究吸收光谱可了解原子、分子和其他许多物质的结构和运动状态,以及它们同电磁场或粒子相互作用的情况。
原子吸收光谱法
原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法。是指物质吸收光子,从低能级跃迁到高能级而产生的光谱。吸收光谱可是线状谱或吸收带。研究吸收光谱可了解原子、分子和其他许多物质的结构和运动状态,以及它们同电磁场或粒子相互作用的情况。
此法是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
什么是发射光谱,什么是吸收光谱
发射光谱:给样品以能量,比如原子发射光谱,原子外层电子由基态到激发态,处于激发态电子不稳定,会以光辐射的形式是放出能量,而回到基态或较低的能级。
得到线状光谱。吸收光谱:用一定波长的光照射样品,样品会吸收一部分光,照射前后就有光强度的变化,记录这种变化得到的是吸收光谱,如分子、原子吸收光谱。
怎么判断是吸收光谱还是连续光谱
①吸收光谱。具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,于是在连续谱的背景上出现相应的暗线或暗带,称为吸收光谱。每种原子或分子都有反映其能级结构的标识吸收光谱。研究吸收光谱的特征和规律是了解原子和分子内部结构的重要手段。吸收光谱首先由J.V.夫琅和费在太阳光谱中发现(称夫琅和费线),并据此确定了太阳所含的某些元素。
②线状光谱。由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分。原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。
③连续光谱。包含一切波长的光谱,赤热固体所辐射的光谱均为连续光谱。同步辐射源(见电磁辐射)可发出从微波到X射线的连续光谱,X射线管发出的轫致辐射部分也是连续谱。
什么是吸收光谱
吸收光谱是材料在某一些频率上对电磁辐射的吸收事件所呈现的比率。实际上,吸收光谱是与发射光谱相对的。每一种化学元素都会在几个对应于能阶轨道的特定波长上产生吸收线,例如,吸收白光中的蓝、绿和黄光会呈现红色,因此吸收谱线可以用来鉴定气体或液体中所含的元素。
这种方法也可以用在不可能直接去测量的恒星和其他的气体上出现的现象。